cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A267434 Numbers of the form x^2 + x + x*y + y + y^2 (A267137) that are not of the form a^2 + b^2 + c^2 where x, y, a, b and c are integers.

Original entry on oeis.org

60, 92, 112, 124, 156, 220, 240, 252, 284, 316, 380, 412, 444, 476, 496, 508, 540, 604, 624, 732, 752, 764, 796, 880, 892, 956, 960, 1008, 1020, 1084, 1136, 1180, 1212, 1244, 1264, 1276, 1308, 1340, 1392, 1436, 1472, 1500, 1520, 1532, 1564, 1596, 1692, 1724, 1776, 1792, 1820, 1852, 1884, 1916, 1980, 1984
Offset: 1

Views

Author

Altug Alkan, Jan 15 2016

Keywords

Comments

Intersection of A004215 and A267137.
Inspiration was the equation x^2 + x + x*y + y + y^2 = a^2 + b^2 + c^2 where x, y, a, b and c are integers.
Complement of this sequence is 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 20, 21, 22, 24, 25, 26, 30, 32, 33, 34, 36, 37, 40, 41, 42, 44, 46, 49, 50, 52, 54, 56, 57, 58, 64, 65, 66, 69, 70, 72, 74, 76, 80, 81, 82, 85, 86, 89, 90, 94, 96, ...

Examples

			60 is a term because 60 = 6^2 + 6 + 6*2 + 2 + 2^2 and there is no integer values of a, b and c for the equation 60 = a^2 + b^2 + c^2.
50 is not a term because 50 = 6^2 + 6 + 6*1 + 1 + 1^2 = 3^2 + 4^2 + 5^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2000, And[Resolve[Exists[{x, y}, Reduce[# == x^2 + x + x y + y + y^2, {x, y}, Integers]]], !Resolve[Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers]]]] &] (* Michael De Vlieger, Jan 15 2016 *)
  • PARI
    isA003136(n) = #bnfisintnorm(bnfinit(z^2+z+1), n);
    isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
    for(n=0, 2000, if(isA003136(3*n+1) && isA004215(n), print1(n, ", ")));

A322430 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^8 is zero.

Original entry on oeis.org

3, 7, 11, 13, 15, 18, 19, 23, 27, 28, 29, 31, 35, 38, 39, 43, 45, 47, 48, 51, 53, 55, 59, 61, 62, 63, 67, 68, 71, 73, 75, 77, 78, 79, 83, 84, 87, 88, 91, 93, 95, 98, 99, 103, 106, 107, 109, 111, 113, 115, 117, 118, 119, 123, 125, 127, 128, 130, 131, 135, 138, 139, 141
Offset: 1

Views

Author

Seiichi Manyama, Dec 07 2018

Keywords

Comments

Indices of zero entries in A000731.
Complement of A267137. - Kemoneilwe Thabo Moseki, Dec 12 2019

Crossrefs

Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), this sequence (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).

Programs

  • PARI
    my(x='x+O('x^160)); Vec(select(x->(x==0), Vec(eta(x)^8 - 1), 1)) \\ Michel Marcus, Dec 08 2018

A363675 Numbers k such that the least common multiple of the degrees of the irreducible characters of S_k equals |S_k| = k!.

Original entry on oeis.org

0, 1, 6, 10, 21, 36, 66, 105, 120, 136, 190, 210, 276, 325, 465, 496, 561, 630, 666, 741, 780, 990, 1081, 1176, 1225, 1540, 1596, 1830, 2080, 2145, 2346, 2556, 2926, 3081, 3160, 3240, 3486, 3570, 3916, 4005, 4186, 4560, 4656, 4950, 5050, 5356, 5460, 5886, 6105
Offset: 1

Views

Author

Diego Martin Duro, Jun 14 2023

Keywords

Comments

Intersection of the sequences of numbers k such that there exists a 2-core partition of k (A267137) and a 3-core partition of k (A000217).

Crossrefs

Formula

From Alois P. Heinz, Jun 16 2023: (Start)
{ k : A175595(k,2) > 0 and A175595(k,3) > 0 }.
{ k : A010054(k) > 0 and A033687(k) > 0 }. (End)

Extensions

More terms from Alois P. Heinz, Jun 16 2023

A363676 Numbers k such that the least common multiple of the degrees of the irreducible characters of A_k equals |A_k| = k!/2.

Original entry on oeis.org

0, 1, 2, 5, 6, 8, 10, 12, 17, 21, 30, 36, 57, 66, 80, 105, 120, 122, 136, 190, 192, 210, 212, 233, 276, 302, 325, 380, 408, 465, 496, 530, 561, 597, 630, 632, 666, 705, 741, 780, 782, 822, 905, 990, 992, 1081, 1130, 1176, 1225, 1433, 1540, 1542, 1596, 1772
Offset: 1

Views

Author

Diego Martin Duro, Jun 14 2023

Keywords

Comments

Intersection of the sequences of numbers k such that there exists a 2-core partition of k or k-2 and a 3-core partition of k. This sequence contains A363675.

Examples

			The degrees of the irreducible characters of A_5 are 1,3,3,4,5 so their least common multiple is 5!/2 = 60, so 5 is a term of the sequence.
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Jun 16 2023

A270122 Indices of prime numbers of the form x^2 + x + x*y + y + y^2 where x and y are integers.

Original entry on oeis.org

1, 3, 7, 12, 13, 24, 25, 26, 33, 35, 45, 50, 51, 53, 55, 59, 60, 77, 79, 80, 82, 84, 87, 88, 104, 106, 113, 116, 121, 123, 127, 135, 136, 140, 148, 152, 159, 165, 169, 174, 176, 178, 184, 186, 189, 204, 209, 211, 212, 216, 218, 221, 223, 226, 227, 237
Offset: 1

Views

Author

Altug Alkan, Mar 11 2016

Keywords

Comments

How is the distribution of a(n), a(n+1) in this sequence where a(n+1) = a(n) + 1?

Examples

			1 is a term because prime(1) = 2 = (-2)^2 + (-2) + (-2)*1 + 1 + 1^2.
3 is a term because prime(3) = 5 = 1^2 + 1 + 1*1 + 1 + 1^2.
7 is a term because prime(7) = 17 = (-5)^2 + (-5) + (-5)*3 + 3 + 3^2.
12 is a term because prime(12) = 37 = (-7)^2 + (-7) + (-7)*5 + 5 + 5^2.
13 is a term because prime(13) = 41 = 7^2 + 7 + 7*(-3) + (-3) + (-3)^2.
		

Crossrefs

Programs

  • PARI
    isA003136(n) = #bnfisintnorm(bnfinit(z^2+z+1), n);
    for(n=1, 250, if(isA003136(3*prime(n)+1), print1(n, ", ")));
Showing 1-5 of 5 results.