A267434 Numbers of the form x^2 + x + x*y + y + y^2 (A267137) that are not of the form a^2 + b^2 + c^2 where x, y, a, b and c are integers.
60, 92, 112, 124, 156, 220, 240, 252, 284, 316, 380, 412, 444, 476, 496, 508, 540, 604, 624, 732, 752, 764, 796, 880, 892, 956, 960, 1008, 1020, 1084, 1136, 1180, 1212, 1244, 1264, 1276, 1308, 1340, 1392, 1436, 1472, 1500, 1520, 1532, 1564, 1596, 1692, 1724, 1776, 1792, 1820, 1852, 1884, 1916, 1980, 1984
Offset: 1
Keywords
Examples
60 is a term because 60 = 6^2 + 6 + 6*2 + 2 + 2^2 and there is no integer values of a, b and c for the equation 60 = a^2 + b^2 + c^2. 50 is not a term because 50 = 6^2 + 6 + 6*1 + 1 + 1^2 = 3^2 + 4^2 + 5^2.
Programs
-
Mathematica
Select[Range@ 2000, And[Resolve[Exists[{x, y}, Reduce[# == x^2 + x + x y + y + y^2, {x, y}, Integers]]], !Resolve[Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers]]]] &] (* Michael De Vlieger, Jan 15 2016 *)
-
PARI
isA003136(n) = #bnfisintnorm(bnfinit(z^2+z+1), n); isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; } for(n=0, 2000, if(isA003136(3*n+1) && isA004215(n), print1(n, ", ")));
Comments