cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217220 Theta series of Kagome net with respect to an atom.

Original entry on oeis.org

1, 4, 0, 4, 6, 0, 0, 8, 0, 4, 0, 0, 6, 8, 0, 0, 6, 0, 0, 8, 0, 8, 0, 0, 0, 4, 0, 4, 12, 0, 0, 8, 0, 0, 0, 0, 6, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 8, 6, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 4, 12, 0, 0, 8, 0, 4, 0, 0, 12, 0, 0, 0, 0, 0, 0, 16, 0, 8, 0, 0, 0, 8, 0, 0, 6, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*q + 4*q^3 + 6*q^4 + 8*q^7 + 4*q^9 + 6*q^12 + 8*q^13 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Cf. A217221.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 80); A[1] + 4*A[2] + 4*A[4] + 6*A[5]; /* Michael Somos, Feb 01 2017 */
  • Maple
    S:= series(JacobiTheta3(0,q)*JacobiTheta3(0,q^3)+JacobiTheta2(0,q)*JacobiTheta2(0,q^3)/2, q, 103):
    seq(coeff(S,q,n),n=0..102); # Robert Israel, Nov 20 2017
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Feb 01 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, kronecker( d, 3)) + if( n%4==0, 2 * sumdiv( n/4, d, kronecker( d, 3))))}; /* Michael Somos, Feb 01 2017 */
    

Formula

Phi_0(q)-phi_1(q^4) in the notation of SPLAG, Chapter 4.
a(n) = 4 * b(n) where b() is multiplicative with b(2^e) = (1+(-1)^e)*3/4, b(3^e) = 1, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p == 1 (mod 6). - Michael Somos, Feb 01 2017
Expansion of (2 * a(q) + a(q^4)) / 3 in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of phi(q) * phi(q^3) + 2 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017