A217259 Numbers n such that sigma(n+1) - sigma(n-1) = 2; sigma(n) = A000203(n) = sum of divisors of n.
4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 435, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488
Offset: 1
Keywords
Examples
Number 435 is in sequence because antisigma(436) - antisigma(434) = 94496 - 93627 = 869 = 2*435 - 1.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..1227 (all terms < 100000)
Crossrefs
Programs
-
Mathematica
Flatten[Position[Partition[DivisorSigma[1,Range[1500]],3,1],?(#[[3]]- #[[1]] == 2&),1,Heads->False]]+1 (* _Harvey P. Dale, May 03 2018 *)
-
PARI
isok(n) = (sigma(n+1) - sigma(n-1)) == 2; \\ Michel Marcus, May 20 2018
Comments