A217278 Sequences A124174 and A006454 interlaced.
0, 0, 1, 3, 10, 15, 45, 120, 351, 528, 1540, 4095, 11935, 17955, 52326, 139128, 405450, 609960, 1777555, 4726275, 13773376, 20720703, 60384555, 160554240, 467889345, 703893960, 2051297326, 5454117903, 15894464365, 23911673955, 69683724540, 185279454480
Offset: 0
Examples
a(18) = 35*(52326 - 1540) + 45 = 1777555, a(19) = 35*(139128 - 4095) + 120 = 4726275.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,34,0,-34,0,-1,0,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,1,0,34,0,-34,0,-1,0,1},{0,0,1,3,10,15,45,120,351,528},40] (* Harvey P. Dale, Aug 04 2019 *)
-
PARI
concat([0,0], Vec(-x^2*(3*x^5+x^4+12*x^3+9*x^2+3*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)) + O(x^100))) \\ Colin Barker, Jun 23 2015
Formula
a(n) = 35*(a(n-4) - a(n-8)) + a(n-12).
lim n --> infinity a(2n)/a(2n - 1) = (3 + sqrt(8))/2.
From Raphie Frank, Dec 21 2015: (Start)
a(2*n + 1) = 1/64*(((4 + sqrt(2)) * (1 - (-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2)) + (4 - sqrt(2)) * (1+(-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2))))^2 - 1.
a(2*n + 2) = 1/2*(3*(a(2*n + 1)) + sqrt((a(2*n + 1)) + 1) * sqrt(8*(a(2*n + 1)) + 1) + 1).
(End)
Comments