cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217283 Expansion of 1/(1 -x -x^2 -x^6 -x^24 - ... -x^(k!) - ... ).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 23, 39, 65, 109, 182, 305, 510, 854, 1429, 2392, 4003, 6700, 11213, 18767, 31409, 52568, 87980, 147249, 246443, 412461, 690316, 1155350, 1933654, 3236267, 5416387, 9065154, 15171922, 25392535, 42498293, 71127400, 119042590, 199235998, 333451939, 558082864, 934037099
Offset: 0

Views

Author

Joerg Arndt, Sep 30 2012

Keywords

Comments

Number of compositions of n into parts 1, 2, 6, 24, ..., k!, ...
The first terms are the same as for A120400, but the two sequences are different.

Programs

  • Maple
    a:= proc(n) option remember; local i, s; if n=0 then 1
          else s:=0; for i while i!<=n do s:=s+a(n-i!) od; s fi
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    nn=41;CoefficientList[Series[1/(1-Sum[x^(i!),{i,1,10}]),{x,0,nn}],x] (* Geoffrey Critzer, Sep 29 2013 *)
  • PARI
    N=66;  x='x+O('x^N);
    /* choose upper limit b in following sum such that b! > N */
    Vec( 1/( 1 - sum(k=1,7, x^(k!) ) ) )

Formula

G.f.: 1/(1 - Sum_{k>=1} x^k! ).