A217285 Irregular triangle read by rows: T(n,k) is the number of labeled relations on n nodes with exactly k edges; n>=0, 0<=k<=n^2.
1, 1, 1, 1, 4, 6, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 1, 25, 300, 2300, 12650, 53130, 177100, 480700, 1081575, 2042975, 3268760, 4457400, 5200300, 5200300, 4457400, 3268760, 2042975, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1
Offset: 0
Examples
G.f.: A(x,y) = 1 + x*(1+y) + x^2*(1+y)^4 + x^3*(1+y)^9 + x^4*(1+y)^16 +... Triangle T(n,k) begins: 1; 1, 1; 1, 4, 6, 4, 1; 1, 9, 36, 84, 126, 126, 84, 36, 9, 1; 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, ...
Links
- Paul D. Hanna, Rows 0..20, as a flattened table of n, a(n) for n = 0..2890.
Programs
-
Mathematica
Table[Table[Binomial[n^2,k], {k,0,n^2}], {n,0,6}] //Grid
-
PARI
{T(n,k)=polcoeff((1+x+x*O(x^k))^(n^2),k)} for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Aug 22 2013
-
PARI
{T(n,k)=polcoeff(polcoeff(sum(m=0, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1) +x*O(x^n)))), n,x),k,y)} {for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print(""))} \\ Paul D. Hanna, Aug 22 2013
Formula
T(n,k) = binomial(n^2,k).
E.g.f.: Sum{n>=0}(1+y)^(n^2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
G.f.: A(x,y) = Sum_{n>=0} x^n*(1+y)^n*Product_{k=1..n} (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1)) due to a q-series identity. - Paul D. Hanna, Aug 22 2013
G.f.: A(x,y) = 1/(1- q*x/(1- (q^3-q)*x/(1- q^5*x/(1- (q^7-q^3)*x/(1- q^9*x/(1- (q^11-q^5)*x/(1- q^13*x/(1- (q^15-q^7)*x/(1- ...))))))))), a continued fraction where q = (1+y), due to an identity of a partial elliptic theta function. - Paul D. Hanna, Aug 22 2013
Comments