cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217323 Number of self-inverse permutations in S_n with longest increasing subsequence of length 3.

Original entry on oeis.org

1, 3, 11, 31, 92, 253, 709, 1936, 5336, 14587, 40119, 110202, 304137, 840597, 2332469, 6487762, 18106906, 50667263, 142194843, 400057791, 1128408337, 3190023641, 9038202201, 25659417876, 72987714502, 207983161609, 593665226069, 1697230353691, 4859461136196
Offset: 3

Views

Author

Alois P. Heinz, Sep 30 2012

Keywords

Comments

Also the number of Young tableaux with n cells and 3 rows.

Examples

			a(3) = 1: 123.
a(4) = 3: 1243, 1324, 2134.
a(5) = 11: 12543, 13254, 14325, 14523, 15342, 21354, 21435, 32145, 34125, 42315, 52341.
		

Crossrefs

Column k=3 of A047884.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1,
          ((n+1)*(6*n^3-5*n^2-7*n-24)*a(n-1)
           +n*(n-1)*(21*n^2-28*n-109)*a(n-2)
           -2*(n-1)*(n-2)*(12*n^2+11*n-3)*a(n-3)
           -12*(3*n+5)*(n-1)*(n-2)*(n-3)*a(n-4))/
          ((n-3)*(3*n+2)*(n+2)*(n+1))))
        end:
    seq(a(n), n=3..40);
  • Mathematica
    MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
    a[n_] := MotzkinNumber[n] - Binomial[n, Quotient[n, 2]];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Oct 27 2021, from 2nd formula *)

Formula

a(n) = A182172(n,3) - A182172(n,2) = A001006(n) - A001405(n).