A217390 Numbers n such that sum of squares of digits of n equals the sum of prime divisors of n.
12, 581, 1014, 1036, 1180, 1272, 1746, 2553, 3420, 3741, 4140, 4544, 5104, 5238, 5313, 5966, 7134, 7272, 8174, 8346, 8549, 9153, 9525, 9536, 10476, 11070, 11800, 12350, 12882, 13481, 13702, 14045, 15341, 15974, 16415, 16999, 17051, 17220, 17444, 18361, 18798
Offset: 1
Examples
581 = 7*83 is in the sequence because 5^2 + 8^2 + 1^2 = 7 + 83 = 90.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):A:= proc(n) add(u^2, u=convert(n, base, 10)) ; end proc: for i from 2 to 20000 do:x:=factorset(i):n1:=nops(x): s:=sum('x[i] ', 'i'=1..n1):if s=A(i) then printf(`%d, `,i):else fi:od:
-
Mathematica
Rest[Select[Range[20000], Total[Transpose[FactorInteger[#]][[1]]]==Total[IntegerDigits[#]^2]&]]
-
PARI
ok(n)={vecsum(factor(n)[, 1]) == vecsum(apply(d->d^2, digits(n)))} \\ Andrew Howroyd, Feb 25 2018
Comments