A217481 Decimal expansion of sqrt(2*Pi)/4.
6, 2, 6, 6, 5, 7, 0, 6, 8, 6, 5, 7, 7, 5, 0, 1, 2, 5, 6, 0, 3, 9, 4, 1, 3, 2, 1, 2, 0, 2, 7, 6, 1, 3, 1, 3, 2, 5, 1, 7, 4, 6, 6, 8, 5, 1, 5, 2, 4, 8, 4, 5, 7, 9, 1, 5, 7, 4, 8, 0, 8, 9, 4, 0, 8, 5, 5, 7, 3, 4, 1, 3, 6, 5, 1, 9, 6, 0, 4, 9, 3, 7, 3, 6, 6, 4, 8, 9, 5, 9, 5, 9, 4, 5, 1, 4, 3, 1, 6, 5, 2, 9, 0, 0, 2
Offset: 0
Examples
equals 0.62665706865775012560394132120276131... = A019727 / 4 = sqrt(A019675).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- Robert Ferréol, Cornu spiral, Mathcurve.
- I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2).
- Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (6.4.7)
- Wikipedia, Fresnel Integral
- Index entries for transcendental numbers
Crossrefs
Programs
-
Magma
Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
-
Maple
evalf(sqrt(2*Pi))/4 ;
-
Mathematica
First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
-
Maxima
fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
-
PARI
sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
-
Sage
((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
Formula
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)
Comments