cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217482 Quarter-square tetrahedrals: a(n) = k*(k - 1)*(k - 2)/6, k = A002620(n).

Original entry on oeis.org

0, 0, 0, 0, 4, 20, 84, 220, 560, 1140, 2300, 4060, 7140, 11480, 18424, 27720, 41664, 59640, 85320, 117480, 161700, 215820, 287980, 374660, 487344, 620620, 790244, 988260, 1235780, 1521520, 1873200, 2275280, 2763520, 3317040, 3981264, 4728720, 5616324, 6608580
Offset: 0

Views

Author

Raphie Frank, Oct 04 2012

Keywords

Comments

Observation: (3/2)*a(n) + 2 is a power of 2 up to n = 6 (giving {2, 2, 2, 2, 8, 32, 128}).
Conjecture: There are no other tetrahedral numbers (Tetra_n = A000292) > 84 such that (3/2)*Tetra_n + 2 is a power of 2. This is true to at least 1.41*10^1505 per computer check by Charles R Greathouse IV on Physics Forums (Nov 2010).

Crossrefs

Programs

  • Maple
    a:= n-> binomial(floor(n^2/4), 3):
    seq(a(n), n=0..41);  # Alois P. Heinz, Feb 16 2024
  • Mathematica
    (#*(#-1)*(#-2)/6)& /@ Table[Floor[n^2/4], {n, 0, 20}] (* Amiram Eldar, Feb 17 2024 *)
  • PARI
    a(n)=my(k=floor(n^2/4));k*(k-1)*(k-2)/6 \\ Charles R Greathouse IV, Oct 05 2012

Formula

a(n) = (1/6)*floor(n^2/4)*(floor(n^2/4)-1)*(floor(n^2/4)-2).
a(2n + 2) = A178208(n+1).
G.f.: -4*x^4*(x^4+3*x^3+7*x^2+3*x+1)/((x-1)^7*(x+1)^5). - Colin Barker, Oct 11 2012
Sum_{n>=4} 1/a(n) = Pi^2/2 - 5/12 - 3*Pi*cot(sqrt(2)*Pi)/(2*sqrt(2)) - 6*Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Amiram Eldar, Feb 17 2024

Extensions

a(24) corrected by Charles R Greathouse IV, Oct 05 2012