cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217484 Partial sums of the numbers in sequence A080253.

Original entry on oeis.org

1, 4, 21, 168, 1865, 26348, 450205, 9011152, 206624529, 5338349652, 153408637349, 4853054571896, 167576795780953, 6271355892192316, 252836327218276653, 10924378168890333600, 503589353964709474337, 24669610145575233317540
Offset: 0

Views

Author

Emanuele Munarini, Oct 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k], {k,0,n}], {n,0,100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
    makelist(sum(c(k),k,0,n),n,0,10);

Formula

a(n) = sum(c(k),k=0..n), where c(n) = A080253(n).
E.g.f.: exp (x)/(2-exp(2*x)) + x*exp (x)/2 + (1/4)*exp(x)*log(1/(2-exp(2*x))). - corrected by Vaclav Kotesovec, Jan 02 2013
a(n) ~ n! * 2^(n-1/2)/(log(2))^(n+1). - Vaclav Kotesovec, Jan 02 2013