A217536 Square array read by antidiagonals, where the top row is the nonnegative integers and the other numbers are the sum of the neighbors in the preceding row.
0, 1, 1, 2, 3, 4, 3, 6, 10, 14, 4, 9, 18, 32, 46, 5, 12, 27, 55, 101, 147, 6, 15, 36, 81, 168, 315, 462, 7, 18, 45, 108, 244, 513, 975, 1437, 8, 21, 54, 135, 324, 736, 1564, 3001, 4438, 9, 24, 63, 162, 405, 973, 2222, 4761, 9199, 13637, 10, 27, 72, 189, 486, 1215, 2924, 6710, 14472, 28109, 41746
Offset: 0
Examples
The array starts: 0 1 2 3 1 3 6 9 4 10 18 27 14 32 55 81
Links
- Alois P. Heinz, Antidiagonals n = 0..150, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(k<0, 0, `if`(n=0, k, add(A(n-1, k+i), i=-1..1))) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 24 2024
Formula
T(m+1,n) = sum(T(m,k), |k-n| <= 1) (and T(0,n)=n), m, n >= 0. - M. F. Hasler, Oct 09 2012
Extensions
Offset 0 from Alois P. Heinz, Aug 24 2024
Comments