A062105 Square array read by antidiagonals: number of ways a pawn-like piece (with the initial 2-step move forbidden and starting from any square on the back rank) can end at various squares on an infinite chessboard.
1, 1, 2, 1, 3, 5, 1, 3, 8, 13, 1, 3, 9, 22, 35, 1, 3, 9, 26, 61, 96, 1, 3, 9, 27, 75, 171, 267, 1, 3, 9, 27, 80, 216, 483, 750, 1, 3, 9, 27, 81, 236, 623, 1373, 2123, 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046, 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303, 1, 3, 9, 27
Offset: 0
Examples
Array begins: 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 5 8 9 9 9 9 9 9 9 9 ... 13 22 26 27 27 27 27 27 27 ... 35 61 75 80 81 81 81 ... 96 171 216 236 242 243 ... 267 483 623 694 721 ... 750 1373 1800 2038 ... 2123 3923 5211 ... 6046 11257 ... 17303 ... ... Formatted as a triangle: 1, 1, 2, 1, 3, 5, 1, 3, 8, 13, 1, 3, 9, 22, 35, 1, 3, 9, 26, 61, 96, 1, 3, 9, 27, 75, 171, 267, 1, 3, 9, 27, 80, 216, 483, 750, 1, 3, 9, 27, 81, 236, 623, 1373, 2123, 1, 3, 9, 27, 81, 242, 694, 1800, 3923, 6046, 1, 3, 9, 27, 81, 243, 721, 2038, 5211, 11257, 17303, ...
Links
- Hans L. Bodlaender, The Chess Variant Pages
- Hans L. Bodlaender et al., editors, The Piececlopedia (An overview of several fairy chess pieces)
Crossrefs
Programs
-
Maple
[seq(CPTVSeq(j),j=0..91)]; CPTVSeq := n -> ChessPawnTriangleV( (2+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ); ChessPawnTriangleV := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; RETURN(ChessPawnTriangleV(r-1,c-1)+ChessPawnTriangleV(r-1,c)+ChessPawnTriangleV(r-1,c+1)); end; M:=12; T:=Array(0..M,0..M,0); T[0,0]:=1; T[1,1]:=1; for i from 1 to M do T[i,0]:=0; od: for n from 2 to M do for k from 1 to n do T[n,k]:= T[n,k-1]+T[n-1,k-1]+T[n-2,k-1]; od: od; rh:=n->[seq(T[n,k],k=0..n)]; for n from 0 to M do lprint(rh(n)); od: # N. J. A. Sloane, Apr 11 2020
-
Mathematica
T[n_, k_] := T[n, k] = If[n < 1 || k < 1, 0, If[n == 1, 1, T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2016, adapted from PARI *)
-
PARI
T(n,k)=if(n<1 || k<1,0,if(n==1,1,T(n-1,k-1)+T(n-1,k)+T(n-1,k+1)))
Extensions
Edited by N. J. A. Sloane, May 22 2014
Comments