cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217540 Scambler statistic on Dyck paths. Triangle T(n, k) read by rows, n >= 0, -n <= k <= n, T(n, k) is the number of Dyck paths of semilength n and k = number of returns + number of hills - number of peaks.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 3, 4, 2, 3, 0, 1, 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1, 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1, 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1, 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
Offset: 0

Views

Author

Peter Luschny, Oct 21 2012

Keywords

Examples

			[n\k] -8,-7,-6, -5,  -4,  -3,  -2,  -1,  0,   1,  2,  3,  4, 5, 6, 7, 8
-----------------------------------------------------------------------
[ 0 ]                                    1,
[ 1 ]                               0,   0,   1,
[ 2 ]                          0,   0,   1,   0,  1,
[ 3 ]                     0,   0,   1,   1,   2,  0,  1,
[ 4 ]                0,   0,   1,   3,   4,   2,  3,  0,  1,
[ 5 ]           0,   0,   1,   6,  10,   9,   8,  3,  4,  0, 1,
[ 6 ]       0,  0,   1,  10,  25,  30,  26,  17, 13,  4,  5, 0, 1,
[ 7 ]    0, 0,  1,  15,  56,  90,  90,  70,  49, 27, 19,  5, 6, 0, 1,
[ 8 ] 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
.
T(5, -2) = 6 counting the Dyck words
[1101011000] (()()(())) [1101100100] (()(())()) [1101101000] (()(()()))
[1110010100] ((())()()) [1110100100] ((()())()) [1110101000] ((()()())) .
		

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, z, expand(`if`(y=0, z, 1)*(b(x-1, y+1, true)
          +b(x-1, y-1, false)*`if`(t and y<>1, 1/z, 1)))))
        end:
    T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, z, i), i=-n..n))
                         (b(2*n-1, 1, true))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, z, Expand[If[y == 0, z, 1]*(b[x-1, y+1, True]+b[x-1, y-1, False]*If[t && y != 1, 1/z, 1])]]]; T[n_] := If[n == 0, 1, Function[p, Table[Coefficient[p, z, i], {i, -n, n}]][b[2*n-1, 1, True]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
  • Sage
    def A217540(n, k):
        def characteristic(d):
            count = 1
            h = d.heights()
            for i in (1..len(d)-1):
                if d[i-1]==1 and d[i]==0: count -= 1
                if h[i]==0: count +=1
                else:
                    if h[i-1]==0 and h[i+1]==0: count += 1
            return count
        if n == 0: return 1
        count = 0
        for d in DyckWords(n):
            if k == characteristic(d): count += 1
        return count
    for n in (0..6): [A217540(n, k) for k in (-n..n)]

Formula

T(n,-1) = A014531(n-2) = [0,0,0],1,3,10,30,90,...
T(n, 0) = A113682(n-2) = [1,0],1,1,4,9,26,70,197,...
T(n, 1) = A194588(n-1) = [0],1,0,2,2,8,17,49,128,...
Sum(k>=0,T(n,k)) = A189912(n-1) = [1],1,2,4,10,25, 66,177,..
Sum(k< 0,T(n,k)) = A217539(n) = 0,0,0,1, 4,17, 66,252,..
Sum(-n<=k<=n,T(n,k)) = A000108(n) = 1,1,2,5,14,42,132,429,..