A217584 Numbers k such that d(k^2)/d(k) is an integer, where d(k) is the number of divisors of k.
1, 144, 324, 400, 784, 1936, 2025, 2500, 2704, 3600, 3969, 4624, 5625, 5776, 7056, 8100, 8464, 9604, 9801, 13456, 13689, 15376, 15876, 17424, 19600, 21609, 21904, 22500, 23409, 24336, 26896, 29241, 29584, 30625, 35344, 39204, 41616, 42849, 44944, 48400, 51984
Offset: 1
Keywords
Examples
d(1^2)/d(1) = d(1)/d(1) = 1 an integer, so 1 belongs to the sequence. 144^2 has 45 divisors: 1, 2, 3, 4, 6, 8, 9, 12, ..., 20736, while 144 has 15 divisors: 1, 2, 3, 4, 6, 8, 9, 12, ..., 144; 45/15 = 3 and so 144 is in the sequence.
References
- Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 134-135.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..100 from Paolo P. Lava)
- The IMO Compendium, Problem 3, 39th IMO 1998.
- Kin Y. Li, Problem 3, Mathematical Excalibur, Vol. 4, No. 3, Jan.-Mar. 1999.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Mathematica
Select[Range[1000], IntegerQ[DivisorSigma[0, #^2]/DivisorSigma[0, #]] &] (* Alonso del Arte, Oct 07 2012 *) Select[Range[228]^2, Divisible[DivisorSigma[0, #^2], DivisorSigma[0, #]] &] (* Amiram Eldar, May 23 2020 *)
-
PARI
dn2dn(n)= {for (i=1, n, if (denominator(numdiv(i^2)/numdiv(i))==1, print1(i,", ");););}
Comments