A217629 Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n.
1, 3, 1, 9, 6, 2, 27, 27, 18, 6, 81, 108, 108, 72, 24, 243, 405, 540, 540, 360, 120, 729, 1458, 2430, 3240, 3240, 2160, 720, 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040, 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320
Offset: 0
Examples
Triangle begins: 1; 3, 1; 9, 6, 2; 27, 27, 18, 6; 81, 108, 108, 72, 24; 243, 405, 540, 540, 360, 120; 729, 1458, 2430, 3240, 3240, 2160, 720; 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040; 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320; etc.
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
Programs
-
Magma
[Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]];
-
Mathematica
Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]]
Formula
T(n,k) = 3^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(3x)*x^k.
Comments