A217714 Modified Euler numbers.
1, 0, -2, -3, 4, 15, -62, -273, 1384, 7935, -50522, -353793, 2702764, 22368255, -199360982, -1903757313, 19391512144, 209865342975, -2404879675442, -29088885112833, 370371188237524, 4951498053124095, -69348874393137902, -1015423886506852353, 15514534163557086904, 246921480190207983615, -4087072509293123892362
Offset: 0
Keywords
Examples
a(0) = 1; a(1) = 1 - 1 = 0; a(2) = -1 - 2 + 1 = -2; a(3) = 2 - 3 - 3 + 1 = -3; a(4) = 5 + 8 - 6 - 4 + 1 = 4; a(5) = -16 + 25 + 20 - 10 - 5 + 1 = 15; a(6) = -61 - 96 + 75 + 40 - 15 - 6 + 1 = -62; a(7) = 272 - 427 - 336 + 175 + 70 - 21 - 7 + 1 = -273; - _Philippe Deléham_, Oct 27 2013 G.f. = 1 - 2*x^2 - 3*x^3 + 4*x^4 + 15*x^5 - 62*x^6 - 273*x^7 + ...
Links
- Wikipedia, Bernoulli Number, Seidel triangle
Programs
-
Mathematica
a[n_] := 2^n* EulerE[n, 1] + EulerE[n] - 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013 *)
Formula
a(n) = -A163982(n) - 1.
a(n) = Sum_{k=0..n} A109449(n,k)*floor((n-k+1)/2). - Philippe Deléham, Oct 27 2013
E.g.f.: 1/cosh(x) + tanh(x) + 1 - exp(x). - Sergei N. Gladkovskii, Nov 10 2014
Extensions
More terms from Jean-François Alcover, Mar 21 2013
Comments