A217730 Expansion of (1+2*x-x^3)/(1-4*x^2+2*x^4).
1, 2, 4, 7, 14, 24, 48, 82, 164, 280, 560, 956, 1912, 3264, 6528, 11144, 22288, 38048, 76096, 129904, 259808, 443520, 887040, 1514272, 3028544, 5170048, 10340096, 17651648, 35303296, 60266496, 120532992, 205762688, 411525376, 702517760, 1405035520, 2398545664, 4797091328, 8189147136, 16378294272, 27959497216
Offset: 0
Links
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Math. 332 (2014), 45--54. MR3227977. See Fig. 5. - _N. J. A. Sloane_, Aug 04 2014
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-2).
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x-x^3)/(1-4*x^2+2*x^4))); // Bruno Berselli, Mar 22 2013 -
Mathematica
CoefficientList[Series[(1 + 2 x - x^3)/(1 - 4 x^2 + 2 x^4), {x, 0, 40}], x] (* Bruno Berselli, Mar 22 2013 *) a[n_,j_,m_]:=Sum[(2^(n+1)Cos[Pi r/(m+1)]^n Cot[Pi r/(2(m+1))] Sin[j Pi r/(m+1)])/(m+1),{r,1,m,2}] Table[a[n,3,7],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
-
Maxima
makelist(coeff(taylor((1+2*x-x^3)/(1-4*x^2+2*x^4), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Mar 22 2013 */
Formula
G.f.: (1+x)*(1+x-x^2)/(1-4*x^2+2*x^4).
a(n) = Sum_{k=0..n} A216232(n-k,k).
a(n) = 4*a(n-2) - 2*a(n-4) for n>=4, a(0)=1, a(1)=2, a(2)=4, a(3)=7.
a(n)*a(n+1)-a(n-1)*a(n+2) = (1-(-1)^n)*2^floor(n/2-1) for n>0. - Bruno Berselli, Mar 22 2013
a(n) = Sum_{r=1..7} (2^n*(1-(-1)^r)*cos(Pi*r/8)^n*cot(Pi*r/16)*sin(3*Pi*r/8))/8. - Herbert Kociemba, Sep 17 2020
Comments