A217769 Least number k > n such that sigma(k) = 2*(k-n), or 0 if no such k exists.
6, 3, 5, 7, 22, 11, 13, 27, 17, 19, 46, 23, 124, 58, 29, 31, 250, 57, 37, 55, 41, 43, 94, 47, 1264, 106, 53, 87, 118, 59, 61, 85, 134, 67, 142, 71, 73, 712, 158, 79, 166, 83, 405, 115, 89, 141, 406, 119, 97, 202, 101, 103, 214, 107, 109, 145, 113, 177, 418, 143
Offset: 0
Keywords
Examples
a(4)=22, since 22 is the least number such that sigma(22)=36=2*(22-4).
Links
- Donovan Johnson, Table of n, a(n) for n = 0..653 (first 241 terms from T. D. Noe)
- Nichole Davis, Dominic Klyve and Nicole Kraght, On the difference between an integer and the sum of its proper divisors, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
Programs
-
Mathematica
Table[Min[Select[Range[2000], DivisorSigma[1, #] == 2*(# - i) &]], {i, 0, 60}] nn = 144; t = Table[0, {nn}]; k = 0; While[k++; Times @@ t == 0, s = (2*k - DivisorSigma[1, k])/2; If[s >= 0 && s < nn && IntegerQ[s] && t[[s + 1]] == 0, t[[s + 1]] = k]]; t (* T. D. Noe, Mar 28 2013 *)
Comments