cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1,    1,     1,     1,     1,      1
...1,    2,     3,     4,     5,      6,      6
...1,    3,     6,    10,    15,     21,     27,     27
...1,    4,    10,    20,    35,     56,     83,    110,    110
...4,   14,    34,    69,   125,    208,    318,    428,    428
..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
.165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
.572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2,  1
1, 3,  3,  1
1, 4,  6,  4,  0
1, 5, 10, 10,  4,  0
0, 6, 15, 20, 14,  0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
		

Crossrefs

Formula

T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).