A217772 a(n) = ((p+1)*(3p)!/((2p-1)!*(p+1)!*2p) - 3)/(3p^3), where p is the n-th prime.
1, 8, 113, 48469, 1232351, 1002175798, 30956114561, 32956274508457, 1386101220044940571, 50017672586399947073, 2548160990547719392420658, 3694160975065765801289789930, 142486973648670437070915061157
Offset: 2
Keywords
Programs
-
Maple
WQ := proc(n,k) local p; p := ithprime(n); ((binomial(k*p,p)-k)/p^3)/k end: seq(WQ(n,3), n=2..14); # Peter Luschny, Feb 09 2016
-
PARI
a(n)=my(p=prime(n)); (binomial(3*p,p+1)*(p+1)/(2*p)-3)/(3*p^3) \\ Charles R Greathouse IV, Mar 26 2013
Formula
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j))/(k*prime(n)^3) for k=3, j=1 and n>=2 (conjectured). - Alexander R. Povolotsky, Apr 18 2013
Comments