cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217778 Expansion of (1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)).

Original entry on oeis.org

1, 3, 10, 34, 117, 407, 1429, 5055, 17986, 64278, 230473, 828391, 2982825, 10754459, 38811802, 140165322, 506449789, 1830590295, 6618524221, 23933966743, 86562282258, 313102489406, 1132598701585, 4097213146599, 14822370816337, 53623952036787
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A diagonal of the square array A217770.

Crossrefs

Cf. A217770.

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)))); // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    LinearRecurrence[{8, -21, 20, -5}, {1, 3, 10, 34}, 26] (* Bruno Berselli, Mar 28 2013 *)
    CoefficientList[Series[(1-x)^2(1-3x)/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 26 2023 *)
  • Maxima
    makelist(expand(((3+sqrt(5))*(5+sqrt(5))^n-(3-sqrt(5))*(5-sqrt(5))^n+(1+sqrt(5))*(3+sqrt(5))^n-(1-sqrt(5))*(3-sqrt(5))^n)/(4*2^n*sqrt(5))), n, 0, 25); /* Bruno Berselli, Mar 28 2013 */

Formula

G.f.: (1-5*x+7*x^2-3*x^3)/(1-8*x+21*x^2-20*x^3+5*x^4).
a(n) = A081567(n) - A094865(n).
a(n) = A217770(n+1,n).
a(n) = 8*a(n-1) -21*a(n-2) +20*a(n-3) -5*a(n-4) for n>3, a(0)=1, a(1)=3, a(2)=10, a(3)=34.
a(n) = ((3+r)*(5+r)^n-(3-r)*(5-r)^n+(1+r)*(3+r)^n-(1-r)*(3-r)^n)/(4*r*2^n), where r=sqrt(5). [Bruno Berselli, Mar 28 2013]