A217791 Numbers k such that sigma(k) = 3*sigma(k+1).
180, 12000, 30996, 47940, 66780, 102816, 128040, 234300, 494088, 712272, 1133088, 1408212, 1623072, 1692768, 1896336, 1925196, 2024760, 2388720, 2529090, 2836008, 3423120, 3724320, 3822360, 4628760, 4750920, 7219608, 7359912, 7603488, 7749060
Offset: 1
Keywords
Examples
47940 is in the sequence because sigma(47940)=145152, sigma(47941)=48384, and 145152=3*48384. 7749060 is in the sequence because sigma(7749060)=24192000, sigma(7749061)=8064000, and 24192000=3*8064000.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..500
Programs
-
Magma
[n: n in [1..10^7] | SumOfDivisors(n) eq 3*SumOfDivisors(n+1)]; // Bruno Berselli, Mar 25 2013
-
Maple
A217791:=proc(q) local n; for n from 1 to q do if sigma(n)=3*sigma(n+1) then print(n); fi; od; end: A217791(10^10);
-
Mathematica
Position[Partition[DivisorSigma[1,Range[78*10^5]],2,1],?(#[[1]] == 3#[[2]]&), {1},Heads->False]//Flatten (* _Harvey P. Dale, Oct 17 2016 *)
Extensions
More terms from Bruno Berselli, Mar 25 2013