A217793 Erdős-Turán Golomb rulers, triangle read by rows.
0, 7, 13, 0, 11, 24, 34, 41, 0, 15, 32, 44, 58, 74, 85, 0, 23, 48, 75, 93, 113, 135, 159, 185, 202, 221, 0, 27, 56, 87, 107, 142, 166, 192, 220, 237, 269, 290, 313, 0, 35, 72, 111, 152, 178, 206, 253, 285, 319, 355, 376, 416, 458, 485, 514, 545, 0, 39, 80
Offset: 1
Examples
First rows: . 1 0,7,13 . 2 0,11,24,34,41 . 3 0,15,32,44,58,74,85 . 4 0,23,48,75,93,113,135,159,185,202,221 . 5 0,27,56,87,107,142,166,192,220,237,269,290,313 . 6 0,35,72,111,152,178,206,253,285,319,355,376,416,458,485,514,545 .
Links
- Reinhard Zumkeller, Rows n = 1..60 of triangle, flattened
- P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. Lond. Math. Soc. 16 (1941), 212-215.
- Eric Weisstein's World of Mathematics, Golomb Ruler.
- Wikipedia, Golomb ruler
- Index entries for sequences related to Golomb rulers
Crossrefs
Cf. A065091 (row lengths).
Programs
-
Haskell
a217793 n k = a217793_tabf !! (n-1) !! k a217793_row n = a217793_tabf !! (n-1) a217793_tabf = map (\p -> [2*p*k + k^2 `mod` p | k <- [0..p-1]]) a065091_list
Formula
T(n,k) = 2*p*k + k^2 mod p with p = n-th odd prime and 0 <= k < p.