A217796 Primes of the form n^4+1 such that (n+2)^4+1 is also prime.
17, 257, 4477457, 8503057, 40960001, 59969537, 384160001, 5802782977, 58594980097, 94197431057, 102627966737, 114733948177, 283982410001, 330123790097, 381671897617, 405519334417, 691798081537, 741637881857, 1700843738897, 1749006250001, 2073600000001
Offset: 1
Keywords
Examples
257 is in the sequence because 4^4+1 = 257 and (4+2)^4+1 = 1297 are both prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Maple
for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `, n^4+1):else fi:od:
-
Mathematica
lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, p]], {n, 0, 3500}];lst Select[Partition[Table[n^4+1,{n,1300}],3,1],AllTrue[{#[[1]],#[[3]]}, PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2020 *)
Comments