A217833 The largest number not exceeding n^2, such that there are no terms of the sequence in the interval (a(n-1)/2, a(n)/2), with a(0)=0, a(1)=1.
0, 1, 2, 4, 8, 16, 32, 49, 64, 81, 98, 121, 128, 162, 196, 225, 242, 256, 324, 361, 392, 441, 450, 484, 512, 625, 648, 722, 784, 841, 882, 900, 968, 1024, 1156, 1225, 1250, 1296, 1444, 1521, 1568, 1681, 1682, 1764, 1800, 1936, 2048, 2209, 2304, 2312, 2450
Offset: 0
Keywords
Examples
Let us find a(6), knowing the previous terms. Since a(5) = 16 and a(4)<=16/2<a(5). Then a(6) = 2*a(5) = 32, since 32<6^2 = 36. Further, since a(5)<=a(6)/2<a(6), then a(7) = 7^2 = 49, since 49<2*a(6) = 64.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A217689.
Programs
-
Maple
a:= proc(n) option remember; local i, j, k, t; if n<2 then n else i, j, k, t:= 0, n-1, iquo(n-1, 2), a(n-1)/2; while k<>i do if a(k)<=t then i:=k else j:=k fi; k:= iquo(i+j,2) od; min(n^2, 2*a(k+1)) fi end: seq (a(n), n=0..100); # Alois P. Heinz, Nov 03 2012
-
Mathematica
a[n_] := a[n] = Module[{i, j, k, t}, If[n < 2, n, {i, j, k, t} = {0, n-1, Quotient[n-1, 2], a[n-1]/2}; While[k != i, If[a[k] <= t, i = k, j = k]; k = Quotient[i+j, 2]]; Min[n^2, 2*a[k+1]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
Formula
a(n) = min(2*a(k+1), n^2) for n>=2 and a(k) <= a(n-1)/2 < a(k+1).
Extensions
More terms from Alois P. Heinz, Nov 02 2012
Comments