cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217861 Number of functions on n unlabeled nodes in which all the components are distinct.

Original entry on oeis.org

1, 1, 2, 6, 14, 38, 103, 280, 773, 2160, 6053, 17064, 48320, 137260, 391091, 1117192, 3198217, 9173480, 26357393, 75845591, 218550709, 630536447, 1821184411, 5265514692, 15238183779, 44136519841, 127940010907, 371135327740, 1077340058523, 3129301019091, 7015876423459
Offset: 0

Views

Author

Geoffrey Critzer, Oct 13 2012

Keywords

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[(1+ x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} (1 + x^n)^A002861(n).