A217876 Triangle read by rows: distribution of adjacent transpositions in involutions.
1, 1, 1, 1, 2, 2, 5, 4, 1, 13, 10, 3, 37, 29, 9, 1, 112, 88, 28, 4, 363, 288, 96, 16, 1, 1235, 984, 336, 60, 5, 4427, 3555, 1248, 240, 25, 1, 16526, 13334, 4764, 956, 110, 6, 64351, 52252, 19023, 3984, 505, 36, 1, 259471, 211646, 78101, 16836, 2261, 182, 7
Offset: 0
Examples
Triangle starts at n=0, k=0: ..1 ..1 ..1 ...1 ..2 ...2 ..5 ...4 ...1 .13 ..10 ...3 .37 ..29 ...9 ...1 112 ..88 ..28 ...4 363 .288 ..96 ..16 ...1 T(5,2) = 3 counts, in cycle form, {(12),(34),(5)}, {(12),(3),(45)}, and {(1),(23),(45)} because each contains 2 adjacent transpositions.
References
- P. Stadler and C. Haslinger, RNA structures with pseudo-knots: Graph theoretical and combinatorial properties, Bull. Math. Biol. (1999) Vol 61 Issue 3, 437-67.
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, 1, `if`(n in s, b(n-1, s minus {n}), expand(b(n-1, s)+add(`if`(i in s, 0, `if`(i=n-1, x, 1)*b(n-1, s union {i})), i=1..n-1)))) end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})): seq(T(n), n=0..14); # Alois P. Heinz, Mar 10 2014
-
Mathematica
Clear[T]; (* T(n,k,j) is the number of involutions on [n] containing k adjacent transpositions but not the adjacent transposition (j,j+1) *) T[n_, k_] /; k < 0 || k > n/2 := 0; T[0, 0] = 1; T[1, 0] = 1; T[2, 0] = 1; T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 2, k - 1] - T[n - 3, k] - T[n - 4, k - 1] + T[n - 4, k] + Sum[T[n - 2, k, j], {j, 0, n - 2}]; T[n_, k_, j_] /; n <= 1 && k >= 1 := 0; T[n_, k_, j_] /; k < 0 := 0; T[n_, k_, j_] /; 0 <= n <= 1 && k == 0 := 1; T[n_, k_, j_] /; j <= 0 || j >= n := T[n, k]; T[n_, k_, j_] /; n >= 2 && k >= 0 := T[n, k, j] = T[n - 2, k, j - 1] + T[n, k] - T[n - 2, k] - T[n - 2, k - 1, j - 1]; Table[T[n, k], {n, 0, 15}, {k, 0, n/2}]
Comments