A217893 50k^2-40k-17 interleaved with 50k^2+10k+13 for k=>0.
-17, 13, -7, 73, 103, 233, 313, 493, 623, 853, 1033, 1313, 1543, 1873, 2153, 2533, 2863, 3293, 3673, 4153, 4583, 5113, 5593, 6173, 6703, 7333, 7913, 8593, 9223, 9953, 10633, 11413, 12143, 12973, 13753, 14633, 15463, 16393, 17273, 18253, 19183, 20213, 21193
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eddie Gutierrez New Interleaved Sequences Part H or Oddwheel.com, Section B1 Line 28 (square_sequencesVIII.html), Part H.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
&cat[[50*k^2-40*k-17,50*k^2+10*k+13]: k in [0..23]]; // Bruno Berselli, Oct 23 2012
-
Mathematica
Flatten[Table[{50 n^2 - 40 n - 17, 50 n^2 + 10 n + 13}, {n, 0, 23}]] (* Bruno Berselli, Oct 23 2012 *) CoefficientList[Series[(-17 + 47*x - 33*x^2 + 53*x^3)/((1+x)*(1-x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
-
PARI
vector(48, n, k=(n-1)\2; if(n%2, 50*k^2-40*k-17, 50*k^2+10*k+13)) \\ Bruno Berselli, Oct 23 2012
Formula
G.f.: (-17+47*x-33*x^2+53*x^3)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = 1+(10*n*(5*n-8)-75*(-1)^n+3)/4. [Bruno Berselli, Oct 15 2012]
Extensions
Definition rewritten by Bruno Berselli, Nov 09 2012
Comments