cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217898 Number of fixed points over all unlabeled functions on n nodes.

Original entry on oeis.org

0, 1, 3, 8, 22, 58, 158, 426, 1170, 3224, 8977, 25105, 70680, 199739, 566842, 1613454, 4605788, 13177776, 37782903, 108522417, 312207970, 899460505, 2594638480, 7493254511, 21663019843, 62687523055, 181561095507, 526275453283, 1526600618192, 4431347014046, 12516888508178
Offset: 0

Views

Author

Geoffrey Critzer, Oct 14 2012

Keywords

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn=30; s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1); rt=Table[a[i],{i,1,nn}]; cfd=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}], {k,1,nn}][[j]], {j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[D[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]], {i,1,nn-1}],y]/.y->1,{x,0,nn}],x] (* after code given by Robert A. Russell in A000081 *)

Formula

a(n) = Sum_{k=1..n} A217897(n,k)*k.
Showing 1-1 of 1 results.