cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218003 Number of degree-n permutations of order a power of 3.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 406859605390184444341678251
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2012

Keywords

Comments

Differs from A053499 first at n=27. - Alois P. Heinz, Jan 25 2014

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! +...
where
log(A(x)) = x + x^3/3 + x^9/9 + x^27/27 + x^81/81 +...+ x^3^n/3^n +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..3^j-1)*a(n-3^j), j=0..ilog[3](n))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, 3^j-1}]*a[n-3^j], {j, 0, Floor@Log[3, n]}]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2025, after Alois P. Heinz *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^k)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: exp( Sum_{n>=0} x^(3^n)/3^n ).