A218003 Number of degree-n permutations of order a power of 3.
1, 1, 1, 3, 9, 21, 81, 351, 1233, 46089, 434241, 2359611, 27387801, 264333213, 1722161169, 16514298711, 163094452641, 1216239520401, 50883607918593, 866931703203699, 8473720481213481, 166915156382509221, 2699805625227141201, 28818706120636531023, 439756550972215638129, 6766483260087819272601, 77096822666547068590401, 406859605390184444341678251
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! +... where log(A(x)) = x + x^3/3 + x^9/9 + x^27/27 + x^81/81 +...+ x^3^n/3^n +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..3^j-1)*a(n-3^j), j=0..ilog[3](n)))) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 25 2014
-
Mathematica
a[n_] := a[n] = If[n < 0, 0, If[n == 0, 1, Sum[Product[n-i, {i, 1, 3^j-1}]*a[n-3^j], {j, 0, Floor@Log[3, n]}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2025, after Alois P. Heinz *)
-
PARI
{a(n)=n!*polcoeff(exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^k)+x*O(x^n)),n)} for(n=0,30,print1(a(n),", "))
Formula
E.g.f.: exp( Sum_{n>=0} x^(3^n)/3^n ).
Comments