A218004 Number of equivalence classes of compositions of n where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions.
1, 1, 2, 4, 6, 9, 14, 19, 27, 37, 51, 67, 91, 118, 156, 202, 262, 334, 430, 543, 690, 867, 1090, 1358, 1696, 2099, 2600, 3201, 3939, 4820, 5899, 7181, 8738, 10590, 12821, 15467, 18644, 22396, 26878, 32166, 38450, 45842, 54599, 64870, 76990, 91181, 107861, 127343, 150182, 176788, 207883
Offset: 0
Keywords
Examples
a(4) = 6 because the 6 classes can be represented by: 4, 3+1, 1+3, 2+2, 2+1+1, 1+1+1+1.
Crossrefs
Programs
-
Mathematica
nn=50;p=CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x];d= CoefficientList[Series[Sum[Product[x^i/(1-x^i),{i,1,k}],{k,0,nn}],{x,0,nn}],x];p+d-1 (* second program *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@#||GreaterEqual@@#&]],{n,0,15}] (* Gus Wiseman, Oct 14 2020 *)
Comments