cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218039 Numbers n such that Q(sqrt(n)) has class number 7.

Original entry on oeis.org

577, 1009, 1087, 1294, 1601, 1761, 1934, 2029, 2251, 2302, 2467, 2913, 4139, 4229, 4702, 5039, 5273, 5417, 5743, 5827, 6151, 6598, 7919, 8097, 8311, 8462, 8661, 8773, 9029, 9049, 9101, 9289, 9326, 9539, 10117, 10313, 10357, 10713, 10957, 11021, 11053, 11269
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 19 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[11269], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 7 &]
  • PARI
    is(n)=issquarefree(n) && qfbclassno(if(n%4>1,4,1)*n)==7 \\ Charles R Greathouse IV, Jan 19 2017

A218041 Numbers n such that Q(sqrt(n)) has class number 9.

Original entry on oeis.org

1129, 1654, 3137, 3719, 4409, 4534, 5521, 5623, 5878, 6809, 7573, 7873, 9998, 10273, 10721, 10814, 11027, 11641, 12323, 12409, 12657, 13069, 13691, 14159, 15374, 15629, 16321, 16382, 17273, 17989, 18633, 19441, 21023, 21781, 22497, 22502, 23003, 23806
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 19 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[23806], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 9 &]
  • PARI
    is(n)=issquarefree(n) && qfbclassno(if(n%4>1,4,1)*n)==9 \\ Charles R Greathouse IV, Jan 19 2017

A081363 Smallest squarefree integer k such that Q(sqrt(k)) has class number n.

Original entry on oeis.org

2, 10, 79, 82, 401, 235, 577, 226, 1129, 1111, 1297, 730, 4759, 1534, 9871, 2305, 7054, 4954, 15409, 3601, 7057, 4762, 23593, 9634, 24859, 13321, 8761, 5626, 49281, 11665, 97753, 15130, 55339, 19882, 25601, 18226, 24337, 19834, 41614, 16899, 55966, 47959
Offset: 1

Views

Author

Dean Hickerson, Mar 19 2003

Keywords

Comments

What is known about the asymptotics of this sequence? - Charles R Greathouse IV, Jan 26 2017
Records: 2, 10, 79, 82, 401, 577, 1129, 1297, 4759, 9871, 15409, 23593, 24859, 49281, 97753, 106537, 159199, 197137, 212137, 239119, 245023, 444089, 589822, 614849, 815413, 837929, 943951, 1025494, 1224121, 1240369, 1333255, 1334026, ..., . - Robert G. Wilson v, Apr 12 2017

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Apr 28 2010
Showing 1-3 of 3 results.