cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332379 Numbers of the form 3^k + prime, with k > 1.

Original entry on oeis.org

11, 12, 14, 16, 20, 22, 26, 28, 29, 30, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 83, 84, 86, 88, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 200
Offset: 1

Views

Author

N. J. A. Sloane, Feb 14 2020

Keywords

Crossrefs

Cf. A218044.

Programs

  • Maple
    q:= n-> ormap(k-> isprime(n-3^k), [$2..ilog[3](n)]):
    select(q, [$1..200])[];  # Alois P. Heinz, Feb 14 2020

A332534 Numbers that are not of the form prime + 2^(2^k) + m! with k >= 0, m >= 0.

Original entry on oeis.org

1, 2, 3, 4, 38, 68, 80, 98, 122, 128, 146, 150, 158, 164, 188, 192, 206, 212, 218, 220, 222, 224, 248, 252, 278, 290, 292, 302, 306, 308, 326, 332, 338, 344, 368, 374, 380, 398, 410, 416, 428, 432, 440, 458, 476, 488, 500, 510, 518, 522, 530, 532, 536, 542
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2020

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) local k, m;
          for k from 0 while 2^(2^k)Alois P. Heinz, Feb 15 2020
  • Mathematica
    q[n_] := Module[{k, m}, For[k = 0, 2^(2^k) < n, k++, For[m = 1, 2^(2^k) + m! < n, m++, If[PrimeQ[n - 2^(2^k) - m!] , Return[False]]]]; True];
    Select[Range[600], q] (* Jean-François Alcover, Nov 26 2020, after Alois P. Heinz *)

A332535 Numbers that are not of the form p + 2^(2^k) + 2^q with p, q primes and k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 18, 20, 24, 28, 30, 32, 34, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 136, 138
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2020

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) local k, i;
          for k from 0 while 2^(2^k)Alois P. Heinz, Feb 15 2020
  • Mathematica
    q[n_] := Module[{k, i}, For[k = 0 , 2^(2^k) < n, k++, For[i = 1, 2^(2^k) + 2^Prime[i] < n, i++, If[PrimeQ[n - 2^(2^k) - 2^Prime[i]], Return[False]]] ]; True];
    Select[Range[200], q] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
Showing 1-3 of 3 results.