A218046 Primes p such that 8p + 2r is a primorial for some r in A006512.
2, 11, 23, 83, 113, 131, 173, 191, 233, 239, 251, 263, 281, 293, 359, 419, 431, 449, 503, 641, 653, 659, 701, 719, 743, 761, 809, 821, 881, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1301, 1433, 1439, 1451, 1493, 1511, 1559, 1583, 1601, 1619
Offset: 1
Keywords
Examples
8*2 + 2*7 = 5# 8*11 + 2*61 = 7# 8*23 + 2*13 = 7# 8*83 + 2*823 = 11# 8*113 + 2*14563 = 13# 8*131 + 2*254731 = 17# 8*173 + 2*463 = 11# 8*191 + 2*14251 = 13# 8*233 + 2*14083 = 13# 8*239 + 2*199 = 11# 8*251 + 2*151 = 11# 8*263 + 2*103 = 11# 8*281 + 2*31 = 11# 8*293 + 2*307444891294244533 = 47# 8*359 + 2*253819 = 17#
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..354
- Michael Kaarhus, Twin Prime Conjectures 1, 2 and 3, 2012, (PDF)
Programs
-
PARI
list(lim)={ my(v=List(),P=3,q); forprime(p=5,lim, P*=p; forprime(t=2,min(lim, (P-2)\4), q=P-4*t; if(q%6==1 && ispseudoprime(q) && ispseudoprime(q-2), listput(v,t)) ) ); vecsort(Vec(v),,8) }; \\ Charles R Greathouse IV, Oct 23 2012
Extensions
Terms corrected by Charles R Greathouse IV, Oct 23 2012
Comments