cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218047 Numbers n such that n^2+1, (n+2)^2+1, (n+6)^2+1, (n+10)^2+1 and (n+12)^2+1 are prime.

Original entry on oeis.org

4, 14, 31464, 37684, 65664, 202034, 287414, 300174, 430044, 630734, 791834, 809244, 885274, 1230334, 1347834, 1411654, 1424674, 1475744, 1635134, 1721844, 1914514, 2391364, 2536414, 2855194, 3151704, 3386994, 3421844, 4010614, 4121494, 4186664, 4566484
Offset: 1

Views

Author

Michel Lagneau, Oct 19 2012

Keywords

Comments

This is a subsequence of A096012.
a(k)==4 mod 10 because if n==0, 2, 6 or 8 mod 10, then n^2+1 or (n+2)^2+1 is divisible by 5. When n==4 (mod 10), then (n+4)^2+1 and (n+8)^2+1 are always divisible by 5.

Examples

			4 is in the sequence because 4^2+1 = 5; 6^2+1 = 37; 10^2+1 = 101; 14^2+1 = 197 and 16^2+1 = 257 are prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):f:=n->n^2+1: for n from 1 to  460000 do:if type(f(n),prime) and type(f(n+2),prime) and type(f(n+6),prime) and type(f(n+10),prime) and type(f(n+12),prime) then printf(`%d, `,n):else fi:od:
  • Mathematica
    lst={}; Do[p1=n^2+1; p2=(n+2)^2+1; p3=(n+6)^2+1; p4=(n+10)^2+1; p5=(n+12)^2+1;If[PrimeQ[p1] && PrimeQ[p2] && PrimeQ[p3] && PrimeQ[p4]&& PrimeQ[p5], AppendTo[lst, n]], {n, 0, 460000}];lst
    Select[Range[457*10^4],AllTrue[(#+{0,2,6,10,12})^2+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    is_A218047(n,d=[0,2,6,10,12])=!for(i=1,#d,isprime(1+(n+d[i])^2) || return)
    forstep(n=4,9e9,10,is_A218047(n) & print1(n",")) \\ M. F. Hasler, Oct 21 2012

Extensions

Given terms a(1..31) double checked by M. F. Hasler, Oct 21 2012