cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A232335 T(n,k)=Number of nXk 0..2 arrays with every 0 next to a 1 and every 1 next to a 2 horizontally or antidiagonally, with no adjacent elements equal.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 6, 18, 16, 1, 10, 32, 74, 42, 1, 16, 82, 154, 308, 110, 1, 26, 162, 628, 734, 1282, 288, 1, 42, 388, 1470, 4906, 3472, 5338, 754, 1, 68, 806, 5530, 13170, 38986, 16338, 22228, 1974, 1, 110, 1858, 13906, 82526, 117690, 312276, 76630, 92562, 5168
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Table starts
.1.....2.......4.......6.........10.........16............26............42
.1.....6......18......32.........82........162...........388...........806
.1....16......74.....154........628.......1470..........5530.........13906
.1....42.....308.....734.......4906......13170.........82526........239992
.1...110....1282....3472......38986.....117690.......1274656.......4158066
.1...288....5338...16338.....312276....1047700......20052758......71916112
.1...754...22228...76630....2510674....9298730.....318521414....1241196022
.1..1974...92562..358656...20221026...82332898....5084744564...21383016966
.1..5168..385450.1676330..162993780..727588212...81376107850..367791626696
.1.13530.1605108.7828014.1314329242.6419787202.1303994749578.6317140944234

Examples

			Some solutions for n=5 k=4
..2..1..0..1....2..1..2..1....2..1..0..2....1..2..0..2....2..1..0..1
..0..1..2..0....0..1..2..0....0..2..1..0....0..1..0..1....2..1..2..1
..2..0..1..0....2..0..1..0....1..2..1..0....2..1..2..1....2..1..0..2
..1..2..1..2....1..2..1..2....1..2..1..0....0..1..0..2....0..2..1..2
..1..0..1..0....1..2..1..0....1..0..2..1....2..1..0..2....1..0..1..2
		

Crossrefs

Column 2 is A025169(n-1)
Column 3 is A218059
Row 1 is A006355(n+1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -2*a(n-3)
k=4: a(n) = 7*a(n-1) -9*a(n-2) -8*a(n-3) -4*a(n-4)
k=5: a(n) = 11*a(n-1) -21*a(n-2) -20*a(n-3) -12*a(n-4) for n>5
k=6: [order 7] for n>9
k=7: [order 16] for n>18
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) for n>3
n=2: a(n) = a(n-1) +3*a(n-2) -a(n-3) +a(n-4) -a(n-5) for n>6
n=3: [order 8] for n>12
n=4: [order 21] for n>24
n=5: [order 36] for n>42
n=6: [order 80] for n>87
Showing 1-1 of 1 results.