cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218073 Number of profiles in domino tiling of a 2*n checkboard.

Original entry on oeis.org

0, 1, 2, 9, 12, 50, 60, 245, 280, 1134, 1260, 5082, 5544, 22308, 24024, 96525, 102960, 413270, 437580, 1755182, 1847560, 7407036, 7759752, 31097794, 32449872, 130007500, 135207800, 541574100, 561632400, 2249204040, 2326762800, 9316746045, 9617286240, 38504502630
Offset: 0

Views

Author

Michel Marcus, Oct 20 2012

Keywords

Crossrefs

Cf. A005430 (bisection).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, n, (n*(5-7*n)*a(n-1) +4*(n-2)*(7*n+16)*a(n-3)
          +(24-12*n+172*n^2)*a(n-2))/ ((n+1)*(43*n-89)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    a[n_] := n/2*Binomial[n + Mod[n, 2], (n + Mod[n, 2])/2]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 22 2013, after Joerg Arndt *)
  • Maxima
    a[0]:0$a[1]:1$a[2]:2$
    a[n]:=(n*(5-7*n)*a[n-1] +4*(n-2)*(7*n+16)*a[n-3]+(24-12*n+172*n^2)*a[n-2])/ ((n+1)*(43*n-89))$
    makelist(a[n] ,n,0,40); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = n/2 * binomial(n+(n%2),(n+n%2)/2); /* Joerg Arndt, Oct 21 2012 */

Formula

If n is even, a(n) = binomial(n, n/2)*n/2.
If n is odd, a(n) = binomial(n + 1, (n + 1)/2)*n/2.