cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218074 Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 7, 10, 15, 18, 25, 31, 41, 53, 66, 81, 103, 125, 154, 190, 229, 276, 333, 399, 475, 568, 673, 794, 938, 1102, 1289, 1512, 1760, 2050, 2384, 2760, 3190, 3687, 4246, 4882, 5609, 6427, 7354, 8412, 9592, 10927, 12439, 14130, 16033, 18177, 20573, 23256, 26271
Offset: 0

Views

Author

Joerg Arndt, Oct 20 2012

Keywords

Comments

Number of up-steps (== number of parts - 1) in all partitions of n into distinct parts (represented as increasing lists), see example. - Joerg Arndt, Sep 03 2014

Examples

			a(8) = 7 because in the 6 partitions of 8 into distinct parts
  1:  [ 1 2 5 ]
  2:  [ 1 3 4 ]
  3:  [ 1 7 ]
  4:  [ 2 6 ]
  5:  [ 3 5 ]
  6:  [ 8 ]
there are 2+2+1+1+1+0 = 7 up-steps. - _Joerg Arndt_, Sep 03 2014
		

Crossrefs

Cf. A015723, Sum_{n>=0} (n * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032020, Sum_{n>=0} (n! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032153, Sum_{n>=1} ((n-1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A072576, Sum_{n>=0} ((n+1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A058884 (up-steps in all partitions).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          b(n, i-1)+`if`(i>n, 0, (p->p+[0, p[1]])(b(n-i, i-1)))))
        end:
    a:= n-> `if`(n=0, 0, (p-> p[2]-p[1])(b(n$2))):
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 03 2014
  • Mathematica
    max=80; s=Sum[(n-1)*q^(n*(n+1)/2)/QPochhammer[q, q, n], {n, Sqrt[max+1]}]+ O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 17 2016 *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(n=1,N, (n-1)*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    v=Vec(gf+'a0);  v[1]-='a0;  v  /* include initial zeros */

Formula

a(n) = A015723(n) - A000009(n) for n>0. - Alois P. Heinz, Sep 03 2014