A218074 Expansion of Sum_{n>=1} ((n-1) * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
0, 0, 0, 1, 1, 2, 4, 5, 7, 10, 15, 18, 25, 31, 41, 53, 66, 81, 103, 125, 154, 190, 229, 276, 333, 399, 475, 568, 673, 794, 938, 1102, 1289, 1512, 1760, 2050, 2384, 2760, 3190, 3687, 4246, 4882, 5609, 6427, 7354, 8412, 9592, 10927, 12439, 14130, 16033, 18177, 20573, 23256, 26271
Offset: 0
Keywords
Examples
a(8) = 7 because in the 6 partitions of 8 into distinct parts 1: [ 1 2 5 ] 2: [ 1 3 4 ] 3: [ 1 7 ] 4: [ 2 6 ] 5: [ 3 5 ] 6: [ 8 ] there are 2+2+1+1+1+0 = 7 up-steps. - _Joerg Arndt_, Sep 03 2014
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 201 terms from Vincenzo Librandi)
Crossrefs
Cf. A015723, Sum_{n>=0} (n * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032020, Sum_{n>=0} (n! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A032153, Sum_{n>=1} ((n-1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A072576, Sum_{n>=0} ((n+1)! * q^(n*(n+1)/2) / Product_{k=1..n} (1 - q^k)).
Cf. A058884 (up-steps in all partitions).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p->p+[0, p[1]])(b(n-i, i-1))))) end: a:= n-> `if`(n=0, 0, (p-> p[2]-p[1])(b(n$2))): seq(a(n), n=0..80); # Alois P. Heinz, Sep 03 2014
-
Mathematica
max=80; s=Sum[(n-1)*q^(n*(n+1)/2)/QPochhammer[q, q, n], {n, Sqrt[max+1]}]+ O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 17 2016 *)
-
PARI
N=66; q='q+O('q^N); gf=sum(n=1,N, (n-1)*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) ); v=Vec(gf+'a0); v[1]-='a0; v /* include initial zeros */
Comments