A218095 Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 5.
541, 11301, 239379, 5287506, 124878033, 3151808478, 84934607175, 2440299822081, 74564772630777, 2416548374532292, 82847673438018762, 2996998457878842144, 114123931204449050115, 4564365783126801549858, 191334572138628994076241, 8390237730288860299836005
Offset: 5
Keywords
References
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..200
Crossrefs
Column k=5 of A135313.
Programs
-
Maple
t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) end: egf:= t(5)(x)-t(4)(x): a:= n-> n!* coeff(series(egf, x, n+1), x, n): seq(a(n), n=5..20);
-
Mathematica
m = 5; t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]] ; egf = t[m][x]-t[m-1][x]; a[n_] := n!*Coefficient[Series[egf, {x, 0, n+1}], x, n]; Table[a[n], {n, m, 20}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
Comments