A218129 2^(((c - 2)^2 + (c - 2))/2) + n = a(n), where c are the positive solutions to {y in N | 2*cos(2*Pi/y) is in Z}; c = {1,2,3,4,6}.
1, 2, 4, 11, 1028
Offset: 0
Examples
2^(((1 - 2)^2 + (1 - 2))/2) + 0 = 2^(a(-1) - 1) + 0 = 1 = a(0). 2^(((2 - 2)^2 + (2 - 2))/2) + 1 = 2^(a(0) - 1) + 1 = 2 = a(1). 2^(((3 - 2)^2 + (3 - 2))/2) + 2 = 2^(a(1) - 1) + 2 = 4 = a(2). 2^(((4 - 2)^2 + (4 - 2))/2) + 3 = 2^(a(2) - 1) + 3 = 11 = a(3). 2^(((6 - 2)^2 + (6 - 2))/2) + 4 = 2^(a(3) - 1) + 4 = 1028 = a(4).
Links
- Eric W. Weisstein, MathWorld: Ramanujan's Square Equation
- Wikipedia, Crystallographic Restriction Theorem
Formula
to n = 4, then a(n) = 2^(a(n - 1) - 1) + n; a(-1) = 1.
Comments