cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218135 Norm of coefficients in the expansion of 1 / (1 - x - 2*I*x^2), where I^2=-1.

Original entry on oeis.org

1, 1, 5, 17, 45, 185, 533, 1921, 6205, 20745, 69541, 229585, 769613, 2552537, 8515125, 28340513, 94357853, 314301865, 1046284741, 3484682865, 11602442605, 38636214649, 128653931093, 428398492865, 1426535718525, 4750159951433, 15817576773605, 52670623373329
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

The radius of convergence of g.f. equals (1 + sqrt(65) - sqrt(2)*sqrt(1+sqrt(65)))/16 = 0.30031050...

Examples

			G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1-x-2*I*x^2) = 1 + x + (1 + 2*I)*x^2 + (1 + 4*I)*x^3 + (-3 + 6*I)*x^4 + (-11 + 8*I)*x^5 + (-23 + 2*I)*x^6 + (-39 - 20*I)*x^7 + (-43 - 66*I)*x^8 +...
so that
a(1) = 1, a(2) = 1 + 2^2, a(3) = 1 + 4^2, a(4) = 3^2 + 6^2, a(5) = 11^2 + 8^2, ...
		

Crossrefs

Programs

  • PARI
    {a(n)=norm(polcoeff(1/(1-x-2*I*x^2+x*O(x^n)), n))}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1-4*x^2) / (1 - x - 8*x^2 - 4*x^3 + 16*x^4).