cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218136 Norm of coefficients in the expansion of 1 / (1 - 3*x + 2*I*x^2), where I^2=-1.

Original entry on oeis.org

1, 9, 85, 873, 8845, 89505, 906373, 9177849, 92932285, 941010705, 9528455221, 96482899305, 976963204333, 9892500250113, 100169136977125, 1014289183762137, 10270454347410973, 103996211523970545, 1053041242918825621, 10662848608027795785, 107969503760905131085
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

The radius of convergence of g.f. equals (9+sqrt(145) - 3*sqrt(2)*sqrt(9+sqrt(145)))/16 = 0.0987579662...

Examples

			G.f.: A(x) = 1 + 9*x + 85*x^2 + 873*x^3 + 8845*x^4 + 89505*x^5 + 906373*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1-3*x+2*I*x^2) = 1 + 3*x + (9 - 2*I)*x^2 + (27 - 12*I)*x^3 + (77 - 54*I)*x^4 + (207 - 216*I)*x^5 + (513 - 802*I)*x^6 + (1107 - 2820*I)*x^7 +...
so that
a(1) = 3^2, a(2) = 9^2 + 2^2, a(3) = 27^2 + 12^2, a(4) = 77^2 + 54^2, a(5) = 207^2 + 216^2, ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x^2)/(1-9x-8x^2-36x^3+16x^4),{x,0,20}],x] (* or *) LinearRecurrence[{9,8,36,-16},{1,9,85,873},30] (* Harvey P. Dale, Mar 22 2023 *)
  • PARI
    {a(n)=norm(polcoeff(1/(1-3*x+2*I*x^2+x*O(x^n)), n))}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1-4*x^2) / (1 - 9*x - 8*x^2 - 36*x^3 + 16*x^4).