A218141 a(n) = Stirling2(n^2, n).
1, 1, 7, 3025, 171798901, 2436684974110751, 14204422416132896951197888, 50789872166903636182659702516635946082, 155440114706926165785630654089245708839702615196926765, 541500903058656141876322139677626107784896646583041951351456223689104719
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..25
Programs
-
Mathematica
Table[StirlingS2[n^2, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
-
Maxima
makelist(stirling2(n^2,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
-
PARI
{a(n)=polcoeff(sum(k=0,n,(k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!),n)}
-
PARI
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)}
-
PARI
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = Stirling2(n^2, n)} for(n=0, 10, print1(a(n), ", "))
Formula
a(n) = [x^n] Sum_{k>=0} k^(n*k) * exp(-k^n*x) * x^k / k!.
a(n) = [x^(n^2-n)] 1 / Product_{k=1..n} (1-k*x).
a(n) ~ n^(n^2)/n!. - Vaclav Kotesovec, May 11 2014