A218144 Number of inequivalent graphs on n nodes where two graphs are equivalent if adjacency is preserved under the action of the alternating group.
1, 2, 4, 12, 40, 184, 1296, 17072, 424992, 20314096, 1836858752, 310029536960, 97286240288512, 56843800957620672, 62057188173197829888, 127071179605916892107264, 489838590133142165412740096, 3566828190793813383233169950592, 49211415580467941255510544567667200
Offset: 1
Keywords
Examples
a(4) = 12 because we have the 11 classes of graphs (A000088) under the action of the symmetric group but the class represented by (say) 1-2-3-4 is separate from the class of graphs that could be represented by 2-1-3-4.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
Programs
-
Mathematica
CoefficientList[Table[PairGroupIndex[AlternatingGroup[n],s]/.Table[s[i]->2,{i,1,Binomial[n,2]}],{n,1,7}],x] (* Second program: *) permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]]; g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!); a[1] = 1; a[n_] := (s = 0; Do[If[EvenQ[Total[p - 1]], s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; 2*s/n!); Array[a, 20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)} a(n) = {my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, s+=permcount(p)*2^edges(p))); if(n==1, 1, 2*s/n!)} \\ Andrew Howroyd, May 22 2018
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 22 2018