cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218144 Number of inequivalent graphs on n nodes where two graphs are equivalent if adjacency is preserved under the action of the alternating group.

Original entry on oeis.org

1, 2, 4, 12, 40, 184, 1296, 17072, 424992, 20314096, 1836858752, 310029536960, 97286240288512, 56843800957620672, 62057188173197829888, 127071179605916892107264, 489838590133142165412740096, 3566828190793813383233169950592, 49211415580467941255510544567667200
Offset: 1

Views

Author

Geoffrey Critzer, Oct 21 2012

Keywords

Examples

			a(4) = 12 because we have the 11 classes of graphs (A000088) under the action of the symmetric group but the class represented by (say) 1-2-3-4 is separate from the class of graphs that could be represented by 2-1-3-4.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Table[PairGroupIndex[AlternatingGroup[n],s]/.Table[s[i]->2,{i,1,Binomial[n,2]}],{n,1,7}],x]
    (* Second program: *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!); a[1] = 1;
    a[n_] := (s = 0; Do[If[EvenQ[Total[p - 1]], s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; 2*s/n!);
    Array[a, 20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, if(sum(i=1,#p,p[i]-1)%2==0, s+=permcount(p)*2^edges(p))); if(n==1, 1, 2*s/n!)} \\ Andrew Howroyd, May 22 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 22 2018