cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218153 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)) ).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 42, 65, 105, 162, 256, 391, 605, 918, 1401, 2106, 3176, 4739, 7076, 10482, 15518, 22833, 33556, 49068, 71633, 104153, 151155, 218609, 315562, 454150, 652343, 934559, 1336328, 1906307, 2714409, 3856777, 5470236, 7743437, 10942743, 15435773
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2012

Keywords

Comments

Compare to the g.f. of A001383:
1 + x*exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 16*x^6 + 25*x^7 +...
where
log(A(x)) = x/1*((1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5)*...) +
x^2/2*((1+x^2)*(1+x^4)*(1+x^6)*(1+x^8)*(1+x^10)*...) +
x^3/3*((1+x^3)*(1+x^6)*(1+x^9)*(1+x^12)*(1+x^15)*...) +
x^4/4*((1+x^4)*(1+x^8)*(1+x^12)*(1+x^16)*(1+x^20)*...) +
x^5/5*((1+x^5)*(1+x^10)*(1+x^15)*(1+x^20)*(1+x^25)*...) +...
Also, the g.f. is equal to the Euler transform of the distinct partitions A000009:
A(x) = 1/((1-x)^1*(1-x^2)^1*(1-x^3)^1*(1-x^4)^2*(1-x^5)^2*(1-x^6)^3*(1-x^7)^4*(1-x^8)^5*(1-x^9)^6*(1-x^10)^8*(1-x^11)^10*...*(1-x^n)^A000009(n-1)*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PartitionsQ[k-1], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 08 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*prod(k=1, n\m+1, 1+x^(m*k)+x*O(x^n)))), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: Product_{n>=1} 1 / (1 - x^n)^A000009(n-1), where A000009(n) equals the number of distinct partitions of n. - Paul D. Hanna, Nov 16 2012