A089259
Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
Offset: 0
From _Gus Wiseman_, Oct 22 2018: (Start)
The a(6) = 22 set multipartitions of integer partitions of 6:
(6) (15) (123) (12)(12) (1)(1)(1)(12) (1)(1)(1)(1)(1)(1)
(24) (1)(14) (1)(1)(13) (1)(1)(1)(1)(2)
(1)(5) (1)(23) (1)(2)(12)
(2)(4) (2)(13) (1)(1)(1)(3)
(3)(3) (3)(12) (1)(1)(2)(2)
(1)(1)(4)
(1)(2)(3)
(2)(2)(2)
(End)
Cf.
A000009,
A001970,
A049311,
A050342,
A056156,
A068006,
A089254,
A116540,
A218153,
A270995,
A296119,
A318360.
-
with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008
# second Maple program:
with(numtheory):
b:= proc(n, i)
if n<0 or n>i*(i+1)/2 then 0
elif n=0 then 1
elif i<1 then 0
else b(n,i):= b(n-i, i-1) +b(n, i-1)
fi
end:
a:= proc(n) option remember; `if` (n=0, 1,
add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 11 2011
-
max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *)
b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018
A218552
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*A(x^k)^n) ).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 46, 107, 253, 604, 1463, 3573, 8812, 21901, 54837, 138145, 350068, 891529, 2281092, 5860471, 15113614, 39109461, 101521521, 264286160, 689820642, 1804890193, 4733051924, 12437565725, 32746931264, 86375236835, 228212881032, 603915863737, 1600500761487
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 107*x^7 +...
where
log(A(x)) = x/1*((1+x*A(x))*(1+x^2*A(x^2))*(1+x^3*A(x^3))*...) +
x^2/2*((1+x^2*A(x)^2)*(1+x^4*A(x^2)^2)*(1+x^6*A(x^3)^2)*...) +
x^3/3*((1+x^3*A(x)^3)*(1+x^6*A(x^2)^3)*(1+x^9*A(x^3)^3)*...) +
x^4/4*((1+x^4*A(x)^4)*(1+x^8*A(x^2)^4)*(1+x^12*A(x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 117*x^6/6 + 295*x^7/7 + 755*x^8/8 + 1933*x^9/9 + 5048*x^10/10 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m/m*prod(k=1,n\m+1,1+x^(m*k)*subst(A,x,x^k +x*O(x^n))^m))));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A218576
G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^k)^n) ).
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 25, 44, 79, 137, 237, 408, 689, 1162, 1946, 3231, 5342, 8776, 14340, 23326, 37758, 60847, 97670, 156145, 248697, 394719, 624343, 984360, 1547187, 2424581, 3788730, 5904230, 9176723, 14226914, 22002523, 33947526, 52258177, 80268131, 123028407
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 25*x^6 + 44*x^7 +...
where
log(A(x)) = x/1*((1+x*(1+x))*(1+x^2*(1+x^2))*(1+x^3*(1+x^3))*...) +
x^2/2*((1+x^2*(1+x)^2)*(1+x^4*(1+x^2)^2)*(1+x^6*(1+x^3)^2)*...) +
x^3/3*((1+x^3*(1+x)^3)*(1+x^6*(1+x^2)^3)*(1+x^9*(1+x^3)^3)*...) +
x^4/4*((1+x^4*(1+x)^4)*(1+x^8*(1+x^2)^4)*(1+x^12*(1+x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 11*x^4/4 + 26*x^5/5 + 39*x^6/6 + 57*x^7/7 + 99*x^8/8 + 142*x^9/9 + 208*x^10/10 +...
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*prod(k=1,n\m,(1+x^(m*k)*(1+x^k+x*O(x^n))^m )))),n)}
for(n=0,50,print1(a(n),", "))
A219231
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*A(x^n)^k) ).
Original entry on oeis.org
1, 1, 2, 5, 15, 47, 160, 554, 1987, 7243, 26873, 100930, 383412, 1469673, 5679033, 22095308, 86489211, 340360513, 1345814572, 5344184197, 21303295069, 85216434084, 341960332173, 1376212103798, 5553269024152, 22463340663474, 91071265881382, 369996643180885, 1506118767637576
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 47*x^5 + 160*x^6 + 554*x^7 +...
where
log(A(x)) = x/(1*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)*...) +
x^2/(2*(1-x^2*A(x^2))*(1-x^4*A(x^2)^2)*(1-x^6*A(x^2)^3)*...) +
x^3/(3*(1-x^3*A(x^3))*(1-x^6*A(x^3)^2)*(1-x^9*A(x^3)^3)*...) +
x^4/(4*(1-x^4*A(x^4))*(1-x^8*A(x^4)^2)*(1-x^12*A(x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 39*x^4/4 + 146*x^5/5 + 594*x^6/6 + 2346*x^7/7 + 9543*x^8/8 + 38710*x^9/9 + 158448*x^10/10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*prod(k=1, n\m+1, 1/(1-x^(m*k)*subst(A, x, x^m +x*O(x^n))^k))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A219232
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*A(x^n)^k) ).
Original entry on oeis.org
1, 1, 2, 4, 11, 30, 92, 284, 918, 3005, 10043, 33943, 116138, 400862, 1395228, 4889389, 17240482, 61117789, 217709832, 778841527, 2797066886, 10080379573, 36444817306, 132147553180, 480444008087, 1751033068088, 6396352141777, 23414462628460, 85878613308907, 315556155264918
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 30*x^5 + 92*x^6 + 284*x^7 +...
where
log(A(x)) = x/1*((1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)^3)*...) +
x^2/2*((1+x^2*A(x^2))*(1+x^4*A(x^2)^2)*(1+x^6*A(x^2)^3)*...) +
x^3/3*((1+x^3*A(x^3))*(1+x^6*A(x^3)^2)*(1+x^9*A(x^3)^3)*...) +
x^4/4*((1+x^4*A(x^4))*(1+x^8*A(x^4)^2)*(1+x^12*A(x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 27*x^4/4 + 86*x^5/5 + 321*x^6/6 + 1128*x^7/7 + 4163*x^8/8 + 15172*x^9/9 + 56078*x^10/10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*prod(k=1, n\m+1, 1+x^(m*k)*subst(A, x, x^m +x*O(x^n))^k)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A219260
G.f. satisfies: A(x) = exp(Sum_{n>=1} x^n*A(x)^n/n * Product_{k>=1} (1 + x^(n*k)*A(x^k)^n)).
Original entry on oeis.org
1, 1, 3, 10, 37, 143, 576, 2393, 10178, 44133, 194341, 866867, 3908454, 17784385, 81562890, 376637216, 1749704080, 8171760933, 38346326963, 180707395127, 854850922373, 4057990958069, 19324260613400, 92288612451684, 441919933724974, 2121281845071105, 10205443975074195
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 143*x^5 + 576*x^6 + 2393*x^7 +...
where
log(A(x)) = x*A(x)/1*((1+x*A(x))*(1+x^2*A(x^2))*(1+x^3*A(x^3))*...) +
x^2*A(x)^2/2*((1+x^2*A(x)^2)*(1+x^4*A(x^2)^2)*(1+x^6*A(x^3)^2)*...) +
x^3*A(x)^3/3*((1+x^3*A(x)^3)*(1+x^6*A(x^2)^3)*(1+x^9*A(x^3)^3)*...) +
x^4*A(x)^4/4*((1+x^4*A(x)^4)*(1+x^8*A(x^2)^4)*(1+x^12*A(x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 101*x^4/4 + 461*x^5/5 + 2144*x^6/6 + 10109*x^7/7 + 48117*x^8/8 + 230998*x^9/9 + 1115875*x^10/10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*A^m/m*prod(k=1, n\m+1, 1+x^(m*k)*subst(A^m, x, x^k +x*O(x^n)))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A219261
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n*A(x^n)/n * Product_{k>=1} (1 + x^(n*k)*A(x^n)^k) ).
Original entry on oeis.org
1, 1, 3, 9, 33, 124, 503, 2089, 8960, 39142, 173978, 783347, 3567123, 16395199, 75966835, 354447193, 1663921966, 7853325055, 37244059607, 177388171005, 848148206917, 4069483589180, 19588001935380, 94559416543623, 457697632011720, 2220852281129195, 10800560004895426
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 33*x^4 + 124*x^5 + 503*x^6 + 2089*x^7 +...
where
log(A(x)) = x*A(x)/1*((1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)^3)*...) +
x^2*A(x^2)/2*((1+x^2*A(x^2))*(1+x^4*A(x^2)^2)*(1+x^6*A(x^2)^3)*...) +
x^3*A(x^3)/3*((1+x^3*A(x^3))*(1+x^6*A(x^3)^2)*(1+x^9*A(x^3)^3)*...) +
x^4*A(x^4)/4*((1+x^4*A(x^4))*(1+x^8*A(x^4)^2)*(1+x^12*A(x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 89*x^4/4 + 396*x^5/5 + 1895*x^6/6 + 8989*x^7/7 + 43545*x^8/8 + 211645*x^9/9 + 1036560*x^10/10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*subst(A, x, x^m +x*O(x^n))/m*prod(k=1, n\m+1, 1+x^(m*k)*subst(A^k, x, x^m +x*O(x^n)))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments