A218197 Decimal expansion of the Perrin argument a (see below).
8, 6, 6, 9, 3, 8, 6, 0, 5, 4, 9, 3, 4, 2, 0, 1, 0, 1, 7, 3, 9, 5, 6, 0, 8, 6, 5, 7, 9, 7, 5, 6, 5, 9, 1, 9, 5, 9, 4, 5, 7, 2, 3, 2, 5, 4, 3, 1, 2, 8, 5, 5, 5, 9, 6, 1, 0, 6, 6, 1, 1, 2, 7, 3, 9, 1, 6, 3, 0, 2, 6, 9, 1, 4, 7, 3, 1, 1, 4, 9, 9, 3, 5, 9, 8, 1, 5, 4, 9, 2, 6, 6, 7, 6, 9, 1, 2, 9, 3, 6, 7, 9, 8, 5, 1, 2, 1, 4, 1, 7, 3, 4, 0, 8, 3, 5, 6, 1, 5, 2
Offset: 0
Examples
0.8669386054934201...
References
- R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Programs
-
Mathematica
ArcSin[1/(2*Root[Function[x, x^3+x^2-1], 1]^(3/2))] // RealDigits[#, 10, 120]& // First (* Jean-François Alcover, Feb 20 2014 *)
-
PARI
asin(1/2/real(polroots(x^3+x^2-1)[1])^1.5) \\ Charles R Greathouse IV, Dec 11 2013
Formula
Equals arccos((1-A060006)/2)/2. - Gerry Martens, Apr 16 2024
Extensions
a(119) corrected by Sean A. Irvine, Apr 16 2024
Comments