A218207
Number of n-digit primes of the form (k-1)^2 + k^2.
Original entry on oeis.org
1, 3, 6, 16, 42, 107, 286, 764, 2124, 5917, 17250, 49818, 145429
Offset: 1
-
n = 0; Table[cnt = 0; While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)
A218210
Number of primes up to 10^n that are of the form (k-2)^2 + (k-1)^2 + k^2.
Original entry on oeis.org
2, 3, 6, 10, 22, 53, 139, 369, 1050, 2984, 8618, 24390
Offset: 1
-
n = -1; cnt = 0; Do[While[n++; p = 3*n^2 + 2; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)
A218211
Number of n-digit primes that are the sum of six consecutive squares of nonnegative numbers.
Original entry on oeis.org
0, 0, 4, 10, 15, 49, 147, 407, 1084, 3010, 8756, 25145, 73424, 215375, 631828, 1870092, 5562131, 16584139, 49630873, 148917071, 448088250
Offset: 1
-
n = 0; Table[cnt = 0; While[n++; p = 91 + 42*n + 6*n^2; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 14}] (* T. D. Noe, Oct 23 2012 *)
A218213
Number of n-digit primes representable as sums of consecutive squares.
Original entry on oeis.org
1, 4, 13, 30, 69, 187, 519, 1401, 3889, 10861, 31640, 90735
Offset: 1
-
nn = 8; nMax = 10^nn; t = Table[0, {nn}]; Do[k = n; s = 0; While[s = s + k^2; s <= nMax, If[PrimeQ[s], t[[Ceiling[Log[10, s]]]]++]; k++], {n, Sqrt[nMax]}]; t (* T. D. Noe, Oct 23 2012 *)
Showing 1-4 of 4 results.
Comments