A218207
Number of n-digit primes of the form (k-1)^2 + k^2.
Original entry on oeis.org
1, 3, 6, 16, 42, 107, 286, 764, 2124, 5917, 17250, 49818, 145429
Offset: 1
-
n = 0; Table[cnt = 0; While[n++; p = 2*n^2 - 2*n + 1; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)
A218209
Number of n-digit primes that are of the form (k-2)^2 + (k-1)^2 + k^2.
Original entry on oeis.org
2, 1, 3, 4, 12, 31, 86, 230, 681, 1934, 5634, 15772
Offset: 1
-
n = -1; Table[cnt = 0; While[n++; p = 3*n^2 + 2; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 10}] (* T. D. Noe, Oct 23 2012 *)
Table[Count[Table[Total[Range[n,n+2]^2],{n,-1,600000}],?(PrimeQ[#] && IntegerLength[#]==k&)],{k,12}] (* _Harvey P. Dale, Oct 17 2016 *)
A218212
Number of primes up to 10^n that are the sum of six consecutive squares of nonnegative numbers.
Original entry on oeis.org
0, 0, 4, 14, 29, 78, 225, 632, 1716, 4726, 13482, 38627, 112051, 327426, 959254, 2829346, 8391477, 24975616, 74606489, 223523560, 671611810
Offset: 1
-
n = 0; cnt = 0; Table[While[n++; p = 91 + 42*n + 6*n^2; p < 10^e, If[PrimeQ[p], cnt++]]; n--; cnt, {e, 14}] (* T. D. Noe, Oct 23 2012, edited by Michael De Vlieger, Feb 18 2018 *)
A218213
Number of n-digit primes representable as sums of consecutive squares.
Original entry on oeis.org
1, 4, 13, 30, 69, 187, 519, 1401, 3889, 10861, 31640, 90735
Offset: 1
-
nn = 8; nMax = 10^nn; t = Table[0, {nn}]; Do[k = n; s = 0; While[s = s + k^2; s <= nMax, If[PrimeQ[s], t[[Ceiling[Log[10, s]]]]++]; k++], {n, Sqrt[nMax]}]; t (* T. D. Noe, Oct 23 2012 *)
Showing 1-4 of 4 results.
Comments